HOME 研究活動 研究要素集 研究要素集 <検索>数理計画法による工学的諸問題の最適化

数理計画法による工学的諸問題の最適化

メンバー: 宮代隆平

分野: 情報学基礎、数学、社会・安全システム科学

所属: 工学研究院

キーワード: 最適化、数理計画、optimization、mathematical programming、mathematical optimization

ウェブサイト:

研究概要

日常生活の中には様々な解決するべき問題が存在していますが、特に工学分野においては、その多くは最適化問題という形になっています。
最適化問題とは、与えられた条件の下でなるべく良い解を見つけるという問題であり、これを解くには様々な方法があります。
 数理計画法(数理最適化)は、最適化問題を解決するための一つの手法です。
 数理計画法では、まず解くべき最適化問題を数理的にモデル化・定式化し、得られた数式を解くことにより問題の最適解を得る、という解決法をとります。
 問題を数式の形で表すというアプローチは、他の経験的な最適化手法と数理計画法の最も異なる部分であり、これにより真の最適解を求めるという点が数理計画法の強みとなっています。
 数理計画法の適用範囲は分野横断的であり、スケジューリング、ロジスティクス、マーケティング、ネットワークなど様々な分野に適用可能です。

主要論文・参考事項

R. Miyashiro, Y. Fukagawa: Optimization of alignment in semiconductor lithography equipment. Precision Engineering, 33 (2009), 327-332.
Y. Shinano, T. Yoshihara, R. Miyashiro, Y. Fukagawa: Optimization of lens adjustment in semiconductor lithography equipment using quadratically constrained and second-order cone programming. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 4 (2010), 785-793.
R. Miyashiro, S. Imahori, T. Matsui: An approximation algorithm for the traveling tournament problem. Annals of Operations Research, 194 (2012), 317-324.
K. Okada, R. Miyashiro: Optimization of assignment of rapid train stops: example of the JR Nambu line. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6 (2012), 622-632.
Ryuhei Miyashiro, Youzou Fukagawa: Exposure apparatus and method, and device manufacturing method, United States Patent, 7,894,039, February 22, 2011.

お問い合わせ先

東京農工大学・先端産学連携研究推進センター
urac[at]ml.tuat.ac.jp([at]を@に変換してください)

研究要素集検索

Solving technology-related optimization problems using mathematical programming

Research members: Ryuhei Miyashiro PhD.

Research fields: Principles of Informatics (1), Mathematics, Social/Safety system science

Departments: Institute of Engineering

Keywords: optimization, mathematical programming, mathematical optimization

Web site:

Summary

We encounter a wide variety of optimization problems in daily life, especially in technology-related problems.
The aim of optimization is to find the best solution under given constraints; various approaches are available for solving optimization problems.
     In the field of mathematical programming, one first describes an optimization problem to solve in a form of mathematical equations, and then finds the solution for the modeled equations so as to obtain an optimal solution for the orginal problem.
     Although computer simulation making use of heuristic procedures is quite popular, it does not guarantee attainment of an optimal solution and provide no information about the accuracy of generated solutions.
On the other hand, mathematical programming techniques unable us to obtain a true optimal solution, and gives outcomes with benefits that will flow back to enrich our society.
     Methods of mathematical programming are multidisciplinary; these procedures can tackle versatile problems, such as scheduling, logistics, marketing, network systems, etc.

Reference articles and patents

R. Miyashiro, Y. Fukagawa: Optimization of alignment in semiconductor lithography equipment. Precision Engineering, 33 (2009), 327-332.
Y. Shinano, T. Yoshihara, R. Miyashiro, Y. Fukagawa: Optimization of lens adjustment in semiconductor lithography equipment using quadratically constrained and second-order cone programming. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 4 (2010), 785-793.
R. Miyashiro, S. Imahori, T. Matsui: An approximation algorithm for the traveling tournament problem. Annals of Operations Research, 194 (2012), 317-324.
K. Okada, R. Miyashiro: Optimization of assignment of rapid train stops: example of the JR Nambu line. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6 (2012), 622-632.
Ryuhei Miyashiro, Youzou Fukagawa: Exposure apparatus and method, and device manufacturing method, United States Patent, 7,894,039, February 22, 2011.

Contact

University Research Administration Center(URAC),
Tokyo University of Agriculture andTechnology
urac[at]ml.tuat.ac.jp
(Please replace [at] with @.)

Search